Denoising Manifold and Non-Manifold Point Clouds

نویسندگان

  • Ranjith Unnikrishnan
  • Martial Hebert
چکیده

The faithful reconstruction of 3-D models from irregular and noisy point samples is a task central to many applications of computer vision and graphics. We present an approach to denoising that naturally handles intersections of manifolds, thus preserving high-frequency details without oversmoothing. This is accomplished through the use of a modified locally weighted regression algorithm that models a neighborhood of points as an implicit product of linear subspaces. By posing the problem as one of energy minimization subject to constraints on the coefficients of a higher order polynomial, we can also incorporate anisotropic error models appropriate for data acquired with a range sensor. We demonstrate the effectiveness of our approach through some preliminary results in denoising synthetic data in 2-D and 3-D domains.∗

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple point of self-transverse immesions of certain manifolds

In this paper we will determine the multiple point manifolds of certain self-transverse immersions in Euclidean spaces. Following the triple points, these immersions have a double point self-intersection set which is the image of an immersion of a smooth 5-dimensional manifold, cobordant to Dold manifold $V^5$ or a boundary. We will show there is an immersion of $S^7times P^2$ in $mathbb{R}^{1...

متن کامل

3D Point Cloud Denoising using Graph Laplacian Regularization of a Low Dimensional Manifold Model

3D point cloud—a new signal representation of volumetric objects—is a discrete collection of triples marking exterior object surface locations in 3D space. Conventional imperfect acquisition processes of 3D point cloud—e.g., stereo-matching from multiple viewpoint images or depth data acquired directly from active light sensors—imply non-negligible noise in the data. In this paper, we adopt a p...

متن کامل

Fractional dynamical systems: A fresh view on the local qualitative theorems

The aim of this work is to describe the qualitative behavior of the solution set of a given system of fractional differential equations and limiting behavior of the dynamical system or flow defined by the system of fractional differential equations. In order to achieve this goal, it is first necessary to develop the local theory for fractional nonlinear systems. This is done by the extension of...

متن کامل

Distance Functions and Geodesics on Points Clouds

An algorithm for computing intrinsic distance functions and geodesics on sub-manifolds of given by point clouds is introduced in this paper. The basic idea is that, as shown in this paper, intrinsic distance functions and geodesics on general co-dimension sub-manifolds of can be accurately approximated by the extrinsic Euclidean ones computed in a thin offset band surrounding the manifold. This...

متن کامل

Approximating Gradients for Meshes and Point Clouds via Diffusion Metric

The gradient of a function defined on a manifold is perhaps one of the most important differential objects in data analysis. Most often in practice, the input function is available only at discrete points sampled from the underlying manifold, and the manifold is approximated by either a mesh or simply a point cloud. While many methods exist for computing gradients of a function defined over a m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007